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bstract

This paper investigates the hydrodynamics and power consumption in laminar stirred vessel flow using numerical computation. The Metzner–Otto
orrelation was established for mixing in power-law fluids. This paper focuses on its application to yield stress fluids. Distributions of shear rates
nd their link to power consumption for helical and anchor agitators are discussed. Insight is sought from the analytical formula for Taylor–Couette
ows. Laws are established for Bingham, Herschel-Bulkley and Casson fluids and reveal similar results. Fully or partially sheared flow situations

ith plug regions are considered. Depending on the fluid model, the concept is valid or constitutes a satisfactory approximation for fully sheared
ows. When the flow is partially sheared, the expression depends on the Bingham number and the concept must be adapted. The results of the
umerical simulations are interpreted in the light of this analysis and results from the literature.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Mixing operations with non-Newtonian fluids are frequently
mployed in areas such as the food, pharmaceutical, paint, or
olymer industries. Additional difficulties for the optimization
f processes often occur with such fluids. In fact, the hydrody-
amics strongly depends on the nature of the fluids involved in
he mixing system. Viscoplastic fluids (also called yield stress
uids) are an important class of non-Newtonian fluids. These
uids flow only when the shear stress is above a certain thresh-
ld, the yield stress, and this leads in particular to dead zones in
he flow which lower mixing efficiency [1–3].

As a resulting global value of local hydrodynamics, power
onsumption is of particular interest, partly because it is easy
o measure. Therefore it has always been a key parameter in all
hemical engineering studies and it is examined in priority for
very mixing system, whether in the industrial or the research
nvironment. It is thus a fundamental parameter not only for

etermining the process operating cost but also for the process
esign. Non-Newtonian fluids and principally yield stress fluids
re still poorly understood in this respect. In this case, experi-
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Numerical analysis

entation becomes more difficult partly because of unwanted
all slip and frozen regions in the vessel. For these specific rea-

ons, numerical and analytical studies are the more appropriate
eans to obtain information about both the hydrodynamics and

he nature of the power correlation.
The objective of this paper is two-fold: (i) to evaluate the

ower consumption for yield stress fluids in two standard mix-
ng systems for highly viscous fluids and (ii) to test the possibility
f applying an appropriate correlation between the power con-
umption and the non-dimensional flow parameters for chemical
ngineering purposes.

Such a correlation for Newtonian fluids in the laminar regime
orresponds to a friction coefficient that is inversely proportional
o the Reynolds number Re. For mixing systems, this property
s written as

PRe = Kp, (1)

here NP is the power number proportional to power consump-
ion P, and Kp is a geometric factor which characterizes the
ystem. This relationship is frequently used in practice. It was

hen logical to extend it to non-Newtonian fluids. Metzner and
tto [4] did this in 1957 for shear thinning fluids (also referred

o as pseudoplastic fluids) and their work has been an authority
ince then. In fact, the Reynolds number needs to be reconsidered

mailto:Dominique.Anne-Archard@imft.fr
dx.doi.org/10.1016/j.cej.2006.08.002
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Nomenclature

Bi Bingham number
Bi* transition Bingham number
c agitator to wall clearance
C torque
C1, C2 critical torque values (Taylor–Couette flow)
D rate of strain tensor
D, Da impeller diameter
H height of the fluid
K Herschel-Bulkley model parameter
Kc Casson model parameter
Kp power constant
Ks Metzner–Otto coefficient
n power law index
N rotation frequency
Np power number
p pitch of the ribbon
P power consumption
r radial co-ordinate
r* non-dimensional radial co-ordinate
R1, R2 inner and outer radius (concentric cylinders)
Re Reynolds number
Re′ critical Reynolds number
Reg generalized Reynolds number
s radius ratio (Taylor–Couette geometry)
T vessel diameter
V�, Vz tangential and axial velocity
V* non-dimensional velocity
X0 non-dimensional radial co-ordinate for transition
w impeller or ribbon width

Greek letters
γ̇ shear rate
γ̇eff effective shear rate
ηeff effective viscosity
η∞ Bingham model parameter (viscosity)
ρ density
τ stress tensor
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τ0 yield stress
ω angular velocity

or non-Newtonian fluids, as the viscosity of the fluid is not con-
tant but dependent on the shear rate. As Eq. (1) characterizes
he laminar flow regime and must be retained in non-Newtonian
aminar flows, it can be used to define a generalized Reynolds
umber. From this generalized Reynolds number, an effective
iscosity ηeff can be deduced. Therefore, ηeff is defined as the
iscosity of the Newtonian fluid providing the same power con-
umption as the non-Newtonian fluid for the studied system:

ρND2
eg =
ηeff

(2)

Metzner and Otto [4] introduced the concept of effective vis-
osity which is linked to an effective shear rate γ̇eff using the

2

f
a
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heological characterization of the fluid η(γ̇). They suggested
his effective shear rate to be proportional to the rotation fre-
uency N:

˙eff = KsN (3)

hey validated their hypothesis with helical screw and heli-
al ribbon agitators. In 1996, Tanguy et al. [5] in their attempt
o perform a numerical simulation of this problem presented a
eview of the literature relating to the major experimental works
p to 1996. Numerous references also figure in the review by
oraiswamy et al. [6]. In fact, many authors deriving a corre-

ation for power consumption in mixing systems have validated
nd adopted this concept for shear thinning fluids. Moreover, the
ariations of the Metzner–Otto parameter Ks with the power-law
ndex n prove to be small for weakly shear thinning fluids and
his justifies the approximation of a constant value. However
rito de la Fuente et al. [7], Carreau et al. [8] and Tanguy et
l. [5] examining highly shear thinning fluids (n in the range
.1–0.4) found a marked increase of Ks with n (helical ribbon
mpellers and anchor) in their experimental results, while Rieger
nd Novak [9] and Sestak et al. [10] observe strongly decreasing
alues. In fact, these results seem to demonstrate the fact that the
alue of Ks depends strongly on the rheology for highly shear
hinning fluids.

Much less attention has been paid to mixing in viscoplastic
uids. The utility of the Metzner–Otto concept in such cases

s debatable. The first published study seems to be by Nagata
t al. [11] who were mainly interested in laminar-turbulence
ransition but also suggested a Reynolds-based condition for the
xistence of a shear-free region. Later, Hirata and Aoshima [2]
ocused their experimental approach on the variations of sheared
egions (‘caverns’) with a generalized Reynolds number calcu-
ated using the Metzner–Otto concept. They justify this approach
y the constant value of the fitted Ks parameter obtained in the
aminar regime (with a Reynolds number in the range 1–10).
urran et al. [12] use the same approach for two viscoplastic
uids and two helical ribbon agitators. The fitted values of Ks
re slightly different for the two fluids with the simple helical
ibbon agitator, but they differ substantially with the double heli-
al ribbon impeller. Hirata and Aoshima therefore suggest that
s depends both on fluid rheology and on geometry. The mix-

ng of viscoplastic fluids has also been studied using numerical
imulations. Bertrand et al. [13] analyze an anchor impeller mix-
ng system, Tanguy et al. [14] a twin-blade planetary mixer and
orrez and André [15] a Rushton turbine. These latter authors
btain Ks values which vary with fluid rheology from 7.3 to 9.6
hile a generalized Reynolds number varies in the range 0.6–15.
onversely for the planetary mixer, Tanguy et al. [14] conclude

hat Ks variations can be put aside when the Bingham number
s less than 40. However, for the anchor agitator mixing system,
ertrand et al. [13] present a detailed analysis for highly vis-
oplastic fluids and observe a weak increase of Ks from 21.1 to

3.8.

The present work studies two mixing systems specifically
or viscoplastic fluids. Such a situation occurs for instance in
n emulsion copolymerization process at high concentrations.
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Fig. 1. Geometry of the mixing systems.
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rheological characterization of this emulsion has been per-
ormed by Marouche et al. [16]. The mixing systems investigated
re flat-bottomed vessels equipped with double helical ribbon or
nchor agitators as they are common systems for highly viscous
uids. The first part is devoted to CFD results. The numerical
pproach was previously validated on the Taylor–Couette flow
or which analytical results are available (Marouche et al. [17]).
he hydrodynamics of the mixing systems is presented here and
e focus on the shear rate which is a key parameter for yield

tress fluids. These results show the effect of viscoplasticity on
he velocity field and on the shear rate field. They constitute
he basis for the calculation of the power consumption which is
tudied in the second part of this paper. In this latter part, the rela-
ionship between the Metzner–Otto parameter (calculated from
he power consumption) and the Bingham number is analyzed. It
s first derived analytically for the Taylor–Couette flow. Sheared
nd non-sheared regions are characterized and their existence
s related to power consumption. The power number is subse-
uently derived numerically for the mixing systems under study
nd the application of the Metzner–Otto concept to such stan-
ard systems is discussed.

. Hydrodynamics and shear rate fields for yield stress
uids in mixing vessel

The two commonly used agitators for highly viscous fluids
re helical ribbon and anchor. The latter, although not usual in
ndustrial processes because of its low efficiency, is interesting
ecause of the mainly tangential flow generated at low rotational
peed, which makes the Taylor–Couette analogy possible (Ait-
adi et al. [18]). Variations of the hydrodynamics and power

onsumption for such agitators have been extensively studied,
or both Newtonian and non-Newtonian pseudoplastic fluids. To
tudy the yield stress fluids which constitute the purpose of this
aper, mixing systems are dealt with by numerical simulation
sing viscoplastic fluids modeled by a Bingham law:

= 0 for |τ| ≤ τ0 (4)

=
(

η∞ + τ0

γ̇

)
D for |τ| ≥ τ0 (5)

here D and τ are, respectively, the rate of strain tensor and the
tress tensor. τ0 is the yield stress and the shear rate γ̇ is defined

s γ̇ =
√

2 tr D2 where tr stands for the trace. A dimensionless

umber comparing yield stress to a viscous stress is defined
hrough the Bingham number:

i = τ0

η∞N
(6)

Numerical simulation is conducted for both double helical
ibbon and anchor agitator using the commercial CFD code
LUENT. A second order scheme is used for the pressure and
or the momentum equations. The coupling velocity–pressure is

rocessed by the SIMPLE algorithm. The computations are con-
ucted in a rotating frame bound to the impeller so that the prob-
em is steady. The Bingham model requires a numerical approx-
mation to overcome infinite viscosity in shear-free regions. The
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Fig. 2. Radial profiles of the axial velocity for Bingham fluids (double helical
ribbon, z* = 1, x* = 0).

F
h

g
by x* = 0 and y* = y/(T/2) = 0.746).

To further investigate the effects of viscoplasticity, it is then
worth comparing shear rate fields. As mentioned previously,
8 D. Anne-Archard et al. / Chemical

sual models for numerical approximation of Bingham fluid are
he bi-viscosity model (Vradis and Otugen [19], O’Donovan
nd Tanner [20]), the Papanastasiou model (Papanastasiou [21],
ham and Mitsoulis [22]), the Bercovier and Engelman model
23] and the Carreau model with a very low power-law index
typically 10−3) [17]. All these models have been implemented
n the code by user-defined functions, apart from the Carreau

odel which is a standard option of FLUENT. These mod-
ls were compared in the theoretical case of a Taylor–Couette
ow. The difference with the analytical results was quantified
n the velocity profile and especially on the critical region of
heared/unsheared transition. The parameters of the numerical
rocedure were chosen to set a final error level of less than 2% of
he reference velocity. Both the comparison and the numerical
rocedure are described in Marouche et al. [17] and Marouche
24]. For the studied 2D and 3D mixing systems, the indepen-
ence to both the mesh size and the approximation parameters
s checked. It has been shown that these approximation param-
ters need to be adjusted when the Bingham numbers increase.
pecial attention is paid to this issue. The unstructured meshes
sed for the 3D anchor and helical ribbon systems consist of
92,825 and 700,218 tetrahedral cells, respectively.

The mixing systems are presented in Fig. 1a and b. The tank
s a flat-bottomed vessel (inside diameter: T) equipped with an
nchor or a double helical ribbon agitator (diameter: Da). The
nchor was treated in 2D and 3D and helical ribbon in 3D. H
s the fluid height. Values for the impeller or ribbon width w,
gitator-to-wall clearance c and pitch of the ribbon p are reported
n Table 1. The double helical ribbon impeller is geometrically
imilar to the one used by Curran et al. [12] in their experimental
tudy.

Numerical simulations were conducted for different Bing-
am numbers in the range 60–12,000 which were obtained using
arious yield stresses and various rotational speeds. As pointed
ut by Marouche et al. in the case of the 2D anchor agitator
[17,24]), the hydrodynamics can be strongly modified by yield
tress. Similar effects are observed on the double helical rib-
on: Figs. 2 and 3 present the non-dimensional radial profiles
f the axial and tangential velocities taken at z = T/2 and x = 0
using V* = V/πNT and r* = r/(T/2)). As observed by Bertrand
t al. [13], yield stress leads to markedly lower axial pump-
ng (Fig. 2). Correlatively, tangential velocity seems to undergo
cceleration when compared to the Newtonian reference case
Fig. 3). But it is noteworthy that the linearity of the profiles
∗
θ (r∗) concerns a region that becomes larger as the Bingham

umber increases. This corresponds to lower velocity gradients
n the radial direction. Yield stress then leads to higher veloci-
ies which are closer to the driven velocity of the agitator. This is
onfirmed by the graph in Fig. 4 which shows the reduced tan-

able 1
eometrical characteristics for agitators

Da/T H/T c/T w/T p/T

nchor 0.96 1 0.02 0.067 –
ouble helical ribbon 0.89 1 0.055 0.144 0.89 F

c

ig. 3. Radial profiles of the tangential velocity for Bingham fluids (double
elical ribbon, z* = 1, x* = 0).

ential velocity on a vertical line crossing the ribbon (defined
ig. 4. Axial profiles of the tangential velocity for Bingham fluids (double heli-
al ribbon, x* = 0, y* = 0.746).
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Fig. 5. Shear rate fields for Bin

iscoplasticity has a major influence on hydrodynamics when
arts of the flow domain experience stresses which are below

he threshold. This leads to unsheared regions. Inversely, when
hear stress is significantly higher than yield stress all over the
omain, viscoplasticity is masked and the fluid behaves like a
seudoplastic fluid.

i
i
c
a

Fig. 6. Shear rate fields for Newtonian refe
fluids (double helical ribbon).

Thus shear rate γ̇ is a key parameter for both mixing effi-
iency and non-Newtonian behavior. Shear rate fields proceed-

ng from 3D simulations with double helical ribbon are presented
n Figs. 5 and 6. Fig. 5a–d present the viscoplastic Bingham
ase for Bingham numbers decreasing from 6000 to 60. Fig. 6a
nd b are for the Newtonian reference case. Similar results in a

rence fluids (double helical ribbon).
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edian horizontal plane for the anchor agitator are presented in
ig. 7a–d. The generalized Reynolds number Reg mentioned in

hese figures is defined as the ratio Kp/NP. The power consump-
ion and, consequently, the power number NP are calculated from
he velocity field by the integration of viscous dissipation on the
hole domain. The power constant Kp is determined with New-

onian cases and remains constant up to a Reynolds number of
bout 10. Values for each case are reported in Table 2 and agree
ith results from the literature.
In these representations of shear rate fields, the same color

ap divides the flow domain into five regions defined by
he limiting values 10−6 s−1, 10−4 s−1, 10−2 s−1 and 100 s−1.
igs. 5a and 7a reveal that a large part of the domain is almost

hear-free for Bingham fluids (shear rate less than 10−6 s−1).
omparison with the Newtonian reference case (Fig. 6a and
for helical ribbon) confirms that hydrodynamics is governed

ndependently by both the Bingham number and the generalized

able 2
ower constants (2D anchor: using H = T)

Kp

D anchor 246
D anchor 334
elical ribbon 325

t
t
b
i
m
(
i
s
t
o
a
r

median horizontal plane (anchor agitator).

eynolds number (see differences between Figs. 5b and 6a, or
etween Figs. 5c and 6b, which are obtained for similar Reynolds
alues). This shows the influence of viscoplasticity on this flow
hich is then restricted to regions around the impeller for high
ingham numbers. The equivalent structure was found for the
nchor agitator as described by Elson [3] or Hirata and Aoshima
2] for mixing of yield stress fluid with agitators such as the
ushton turbine, pitched blade turbine or marine propeller. If

he mixing power is insufficient, the flow is limited to a cav-
rn around the impeller and the surrounding fluid is at rest. As
easured with LDA by Hirata and Aoshima [2], the cavern is of

pproximately constant size in the laminar regime and begins
o increase in size for generalized Reynolds numbers larger
han 30 (as in the case of the Rushton turbine and non-baffled
ank). Hirata and Aoshima used a generalized Reynolds number
ased on the Metzner and Otto concept. However, although it
s not mentioned in their paper, the given data permit an esti-

ate of the Bingham number. This gives values between 3.6
Reg = 1) and 1.4 (Reg = 30). Considering the results presented
n Figs. 5a–d and 7a–d, numerical simulation reveals that these
heared regions slowly increase in size as observed in Ref. [2] for

he caverns, but simultaneously, higher shear rates progressively
ccur in the shear-free region of Figs. 5a or 7a. When reaching
higher Reynolds number (Reg = 10, Fig. 5c), the shear-free

egion no longer exists in Bingham fluid and the structure of
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he flow is similar to the Newtonian case (Fig. 6b). Subse-
uently, shear stresses are higher than the yield stress throughout
he domain so that the effects of viscoplasticity are not dis-
ernible and the fluid behaves like a shear thinning fluid for these
ow conditions. The differences from the Newtonian case result
rom power-law behavior. Nagata et al. [25], in their numerical
pproach applied to several agitators including anchor and heli-
al ribbon, showed the existence of a critical Reynolds number
e′ beyond which there are no shear-free regions throughout

he tank. Re′ is based on the plastic viscosity η∞ and linked
o fluid and geometry parameters. Expressed with the Bingham
umber, this relation is written as

√
Re′/Bi = 1. For the four

ases of Fig. 5, this quantity is equal to 0.014, 0.14, 0.70, and
.41, respectively (and 0.002, 0.02, 0.58 and 2.3 in Fig. 7a–d).
hus, the Nagata criterion is valid as a first approximation taking
ccount of the fact that the evolution of the shear-free region is
rogressive.

. Power consumption and Metzner–Otto concept

Now our purpose is to explore how the power number varies
ith the yield stress, i.e. with the Bingham number. To achieve

his, the mixing system hydrodynamics results presented in Sec-
ion 2 are used to calculate the power consumption and the

etzner–Otto parameter Ks. In fact, a complex flow configu-
ation has been observed in the shear rate distribution. In order
o understand and analyze these results, the Taylor–Couette flow
s used to establish a qualitative basis of interpretation. Indeed
everal authors have used this analogy to analyze flows in mix-
ng systems (Thakur et al. [26], Bousmina et al. [27], Ait-Kadi
t al. [18]). So this simple flow is examined prior to examining
he standard mixing systems.

.1. Analytical Taylor–Couette flow

The velocity field for the basic Taylor–Couette flow is well-
nown for the standard viscoplastic models, but to the best of
ur knowledge, these data have not been used to examine the
–O parameter. Therefore we now focus on the incompressible,

sothermal and 2D flow between two concentric cylinders of
eight H, with no-slip condition on the cylinders. The outer
ylinder is fixed, while a torque C is applied to the inner cylinder
hich has a rotation frequency N. A geometrical parameter s is
efined by the inner to outer diameter ratio R1/R2.

The following results are established for Bingham fluids.
imilar results are obtained for Herschel-Bulkley fluids (case
= 1/2 and n = 1/3) and Casson fluids. Constitutive equations
nd their subsequent results are presented in Appendix A (see
able A.1 for Bingham number definition). Velocity profiles
or such fluids have already been presented by Bird, Dai and
arusso [28] for a Bingham Fluid, or Jarny and Coussot [29] for
erschel-Bulkley fluids. Whatever the constitutive equation for

he fluid is, the hydrodynamics for viscoplastic fluids depends

n the torque C with two critical values: C1 = 2πHτ0R

2
1 and

2 = 2πHτ0R
2
2. For lower torque (C ≤ C1 < C2), the shear stress

mposed on the fluid is below the threshold τ0 and, with no-
lip boundary conditions, this leads to zero velocity over the

•
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ntire domain. For intermediate and higher torques, shear stress
epends on the radial co-ordinate r* = r/R2 and is a decreasing
unction of r*.

Two cases are considered related to a critical radius X0:

0 = 1

R2

√
1

2πH

C

τ0
(7)

For intermediate torque (C1 ≤ C ≤ C2), the shear stress is
igher than the threshold τ0 until r* is lower than X0. Conversely,
he shear stress is lower than τ0 for greater values of r*. This
ow will be called ’mixed flow’ as the fluid is sheared in the
egion defined by r* ≤ X0 and motionless for r* ≥ X0. Note that
he previous condition for C is equivalent to the X0-condition:
≤ X0 ≤ 1.

For higher torque (C ≥ C2 > C1, equivalent to: X0 ≥ 1), the
hole domain is sheared. This kind of flow will be called ‘fully

heared flow’. In this configuration, the shear rate is non-zero
hroughout the domain and the apparent behavior of the fluid is
ot fundamentally different from that of a corresponding shear
hinning fluid.

It is noteworthy that X0 and the Bingham number are con-
ected by a one to one relation (see Appendix A, Table A.2). The
ransition between mixed and fully sheared flows then occurs for
0 = 1 or, equivalently, for Bi = Bi* with:

i∗ = 4πs2

1 − s2 + 2s2 ln s
(8)

The shear-free regions observed in mixing systems are similar
o those of Taylor–Couette flow and we will now focus on power
onsumption in connection with hydrodynamics. Expression of
he power consumption P for power-law fluids with power-law
ndex n is given in [30] and this leads to Ks value for this geom-
try [7]:

s = 4πnn/(1−n)

(
(1 − s2/n)

n

1 − s2

)1/(1−n)

(9)

In addition, a weak dependence on n is observed as long as the
atio s is sufficiently high, thereby justifying a n-independency
n the first approximation.

Now considering a Bingham fluid, the fact of expressing the
eneralized Reynolds number allows us to compute an effective
iscosity ηeff for the flow. Using the constitutive Eq. (5) and
elation (3) successively, we define an effective shear rate γ̇eff
ssociated with the effective viscosity ηeff and finally the Ks
xpression for this geometry:

For mixed flow (X0 ≤ 1):

Ks = 4π

1 − X2
0 + 2 ln(X0/s)

(10)
For fully sheared flow (X0 ≥ 1)

Ks = −2π

ln s
(11)
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ig. 8. Metzner–Otto parameter Ks for viscoplastic fluids in Taylor–Couette
ow. Vertical lines: transition Bingham number Bi* for the three models studied
case s = 0.5 for Bingham, Casson and Hershel Bulkley with n = 0.5).

So, for a Bingham fluid, the Ks value is constant for fully
heared flows (i.e. when C ≥ C2 or Bi ≤ Bi*) but depends on X0
or C) for mixed flows. Using the correspondence between X0
nd the Bingham number Bi, Fig. 8 presents Ks versus Bi in
he case of s = 0.5. The transition between mixed flow and fully
heared flow is observed for Bi = Bi*. To show the influence
f the constitutive law, Ks versus Bi is also presented for the
erschel-Bulkley (n = 0.5) and Casson models in Fig. 8. Both

he minimum Ks value and the transition Bingham number Bi*

epend on the model. It should be noted that, unlike the Bingham
odel, the Metzner–Otto parameter Ks is not constant when the
ow is fully sheared for either the Hershel–Bulkley or Casson
odels but variations of Ks are weak and approximation by a

onstant value may be satisfactory in this case.
A preliminary conclusion is that the Metzner–Otto concept is

alid for Bingham fluids insofar as the flow corresponds to a fully
heared regime, that is, when the fluid is used in its shear thinning
omain. However, Ks variations increase when s decreases, and
constant Ks value can be quite acceptable for higher values of
(for instance: 25% variations for s = 0.8).

The great interest of the Meztner–Otto correlation is the pre-
iction of power consumption and it is easy to use when Ks
s constant. This is justified for power-law fluids but must be
sed with care for viscoplastic fluids when the flow is not fully
heared. For instance, Ks varies in a ratio of 1:2 when s = 0.5 and
onsidering it as constant leads to significant errors on effective
iscosity ηeff and on power consumption.

.2. Numerical results for mixing system and discussion

Focusing now on the numerical results for the mixing sys-
ems under consideration, the Metzner–Otto parameter Ks was
etermined as described in Section 3.1 for the Couette flow.
ig. 9 presents Ks versus Bi in the laminar region for both dou-
le helical ribbon impeller and 2D and 3D anchors. Concerning

umerical simulations conducted for the 2D anchor agitator, it is
oteworthy that (Ks, Bi) values are obtained with different rota-
ion frequencies and different yield stresses, which confirms that

s depends mainly on Bi. The large range of Bingham numbers

B
t
R
b

ig. 9. Metzner–Otto parameter Ks for Bingham fluids in mixing systems.

xplored, up to 1.2 × 104, reveals significant variations of Ks for
he 2D anchor, corresponding to a ratio of 1:3.27 for the extreme
alues of Bi. Taking into account the 3D effects reduces these
ariations to a ratio of 1:2.55. The double helical ribbon gives
eaker variations with a ratio of 1:1.32 although an asymptotic
alue for low Bingham numbers is not reached. The Ks versus Bi
urve is therefore similar to that observed for the Taylor–Couette
ow: a smoothly varying region for high Bingham numbers cor-
esponding to a large shear-free region. Decreasing Bi leads to
transition region with noticeable Ks variations for Bingham

umbers in the range 30–1000 (anchor) or 30–100 (double heli-
al ribbon) where the shear rate progressively increases in the
essel while shear-free regions vanish.

Numerical results obtained by Bertrand et al. [13] for a 3D
nchor agitator differ from ours as they indicate low variations of
s in a ratio of 1:1.13 when the Bingham number varies from 8

o 7500. This latter conclusion does not agree with our observa-
ions for comparable configurations. However, the experimental
esults in literature do not justify the use of constant Ks on a
arge range of Bingham numbers. Indeed, the constant value of

s used by Hirata and Aoshima [2] in their analysis is satisfac-
ory because the Bingham number range explored is restricted
from 1.4 to 3.6). But experimental results obtained by Curran
t al. [12] are particularly interesting as these authors studied
he same double helical ribbon as we did, and observed non-
egligible variations of Ks. Fitting their power number results,
hey obtain a mean value of Ks equal to 16 and 27 for each of
he two fluids that they tested. Bingham numbers can be calcu-
ated for these experiments and lie in the range 5–30 for the first
uid (Ks = 16), and 10–52 for the second fluid (Ks = 27). These
xperimental values are reported in Fig. 5. It is worth noticing
hat they are close to the minimum and maximum values that we
btain numerically for the same geometry (19 and 26) although
heir experimental values are shifted towards lower Bingham
umbers.

Thus the differences in the values of Ks with respect to the

ingham number Bi impose the use of a non-constant value in

he Metzner–Otto correlation for a large Bi range. A generalized
eynolds number Reg, which is linked to the fluid rhéology, can
e determined using the Ks parameter. Variations in the value
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f Ks induce differences in the evaluation of Reg and thus in
he determination of the flow regime. The results of the present
aper concord in a qualitative sense with the theoretical results
btained for the Taylor–Couette flow and are consistent with
xperimental observations. They can be retained as a working
asis for the purpose of chemical engineering design.

. Conclusion

This numerical work has been developed in order to pro-
ide a physical analysis of mixing in viscoplastic fluids from
he knowledge of local hydrodynamics and shear rate distribu-
ions. Large shear-free zones can appear in which the yield stress
nduces plug flows. This drastically changes the law of power
onsumption with respect to the Reynolds number. For this rea-
on, we have examined the validity of the Metzner–Otto concept
n a large range of Bingham and Reynolds numbers.

As a qualitative support to the analysis of mixing systems, the
nalytical results for the Taylor–Couette flow are used to express
he power number as well as the Ks parameter for this specific
ow. They show that Ks strongly depends on the Bingham num-
er and on X0 critical radius delimiting the shear and shear-free
egions. Such regions are observed in the studied mixing systems

hrough the examination of the shear rate fields.

After examination of two standard agitators for high viscos-
ty fluids (double helical ribbon and anchor), it can be concluded
hat a constant value for the Metzner–Otto parameter Ks is not

e
f
t

able A.1
erschel-Bulkley and Casson fluids: constitutive law and Bingham number definition

Herschel-Bu

odel: Eq. (4) and, for τ ≥ τ0 τ =
(

Kγ̇n−

i
τ0

KNn

able A.2
elation between Bingham number and X0 parameter for Taylor–Couette flow define

Mixed flow (s ≤ X0 ≤ 1)

ingham Bi = 4π

(X2
0/s

2) − 1 − 2 ln(X0/s)

erschel-Bulkley (n = 1/2) Bi = (2π)1/2

((1/4)(X4
0/s

4) − (X2
0/s

2) + (3/4) + ln(X

asson Bi = 4π

(X2
0/s

2) − 4(X0/s) + 3 + 2 ln(X0/s)

able A.3
etzner–Otto parameter Ks for Herschel-Bulkley and Casson fluids

Ks

erschel-Bulkley (n = 1/2) Ks = 4π2s4

Bi2X4
0(1 − s2)2

(

asson Ks = 4π

(X2
0/s

2)(
√

Bi
eering Journal 125 (2006) 15–24 23

reasonable option when the Bingham number varies signifi-
antly. These results are coherent with the experimental results
resented in literature. On the basis of this analysis it is clear that
variation of Ks must be taken into account and that it would be
ery useful to improve the knowledge of hydrodynamics, par-
icularly the sheared/unsheared region distribution, in order to
rovide a predictive tool for designers.
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ppendix A

Additional results for Bingham fluids and results for
erschel-Bulkley and Casson fluids are given in Tables A.1–A.3.

.1. Metzner–Otto parameter Ks for general
erschel-Bulkley fluid
For the general case of Herschel-Bulkley model (i.e. what-
ver n is), a simple analytic expression does not exist for Ks
or the Taylor–Couette flow. But it is easy to demonstrate exis-
ence and uniqueness for Ks. Thus, determining velocity field in

lkley fluid Casson fluid

1 + τ0

γ̇

)
D τ =

(
Kc +

√
τ0

γ̇

)2

D

τ0

K2
c N

d in Section 2.2

Fully sheared flow (X0 ≥ 1)

Bi = 4π

(X2
0/s

2) − X2
0 + 2 lns

0/s))
1/2

Bi = (2π)1/2

((1/4)(X4
0/s

4)(1 − s4) − (X2
0/s

2)(1 − s2) − ln s)
1/2

Bi = 4π

(X2
0/s

2)(1 − s2) − 4(X0/s)(1 − s) − 2 ln s

Ks,min

1 +
√

1 + 1

π
Bi2

X2
0

s2
(1 − s2)

)2

2π
1 + s2

1 − s2

Bi

(1 − s2) − √
4π(s/X0))

2
π

1 + s

1 − s
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ewtonian case leads to:

= C

8π2HR2
2η

1 − s2

s2 (A.3)

For viscoplastic fluids, ηeff is defined as the Newtonian vis-
osity leading to the same power consumption. Eq. (A.3) then
pplied for η = ηeff. Together with Eq. (7) to express the torque
and using the constitutive law (Table A.1), one obtains:

1

4π

1 − s2

s2 Bi X2
0Ks − Kn

s − Bi = 0 (A.4)

For fixed values of s, X0 and Bi, Eq. (A.4) has a single positive
s-solution. As a complementary result (A.5) gives:

s,max = 4π

1 − s2 . (A.5)
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